Section 12.5: (824) 5, 7, 11, 13, 29, 31, 45; 4, 10, 12, 14, 26, 30, 34
On a separate piece of paper, also do the following exercises.

E1. Find two unit vectors in \mathbb{R}^{2} that make an angle of 45° with $4 \mathbf{i}+3 \mathbf{j}$.
E2. Prove the following:
(a) For vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^{3},

$$
|\mathbf{a} \times \mathbf{b}|^{2}=|\mathbf{a}|^{2}|\mathbf{b}|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2} .
$$

(b) If \mathbf{a} and \mathbf{b} are nonzero vectors with $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a} \times \mathbf{b}|$, what is the angle between \mathbf{a} and \mathbf{b} ? Write your answer in degrees.

E3. Find a vector orthogonal to the plane through the points $P(1,0,0), Q(0,2,0), R(0,0,3)$ and find the area of the triangle $P Q R$.

E4. Find the center and radius of the sphere $x^{2}+y^{2}+z^{2}=4 x-2 y$.
E5. Find an equation of a sphere if one of its diameters has endpoints $(2,1,4)$ and $(4,3,10)$.
E6. On the sphere $x^{2}+y^{2}+z^{2}+2 x-2 y-4 z=3$, find the points closest to and farthest from the origin.

E7. Find equations of the spheres with center $(2,-3,6)$ that touch
(a) the $x y$-plane;
(b) the $y z$-plane;
(c) the $x z$-plane.

E8. Describe in words the region of \mathbb{R}^{3} represented by $1 \leq x^{2}+y^{2}+z^{2} \leq 25$.
E9. Consider the points P such that the distance from P to $A(-1,5,3)$ is twice the distance from P to $B(6,2,-2)$. What is the set of all such points P ? Be as specific as possible.

E10. Find an equation of the set of all points equidistant from the points $P(6,2,-2)$ and $Q(-1,5,3)$. Describe this set.

