1.
$$2 \times 2$$
 Determinant: $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$.

2.
$$3 \times 3$$
 Determinant: $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}.$

3. Compute
$$\begin{vmatrix} -2 & -5 \\ 1 & 3 \end{vmatrix}$$
 and $\begin{vmatrix} 2 & 3 & -1 \\ 0 & 1 & 0 \\ -2 & -1 & 3 \end{vmatrix}$.

4. Cross Product: The cross product of two vectors $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ in \mathbb{R}^3 is the vector

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}.$$

- 5. Compute $\langle 1, -3, 5 \rangle \times \langle -2, 4, 6 \rangle$.
- 6. Theorem: For any vector $\mathbf{a} \in \mathbb{R}^3$ we have $\mathbf{a} \times \mathbf{a} = \mathbf{0}$ and $\mathbf{a} \times \mathbf{0} = \mathbf{0}$.
- 7. Theorem: For $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$ the cross product $\mathbf{a} \times \mathbf{b}$ is orthogonal (normal) to both \mathbf{a} and \mathbf{b} .
- 8. Right-hand Rule: If you align the fingers of your right hand along the vector \mathbf{a} and bend your fingers around in the direction of rotation from \mathbf{a} toward \mathbf{b} through an angle of less than 180° , your thumb will point in the direction of $\mathbf{a} \times \mathbf{b}$. Note that $\mathbf{b} \times \mathbf{a}$ points in the opposite direction of $\mathbf{a} \times \mathbf{b}$.
- 9. Warning! $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}$, and $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \neq \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ in general.

- 10. Theorem: For any vectors $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$ and any scalar λ , the following hold:
 - (a) $\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})$

Anticommutativity

- (b) $(\lambda \mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (\lambda \mathbf{b}) = \lambda (\mathbf{a} \times \mathbf{b})$
- (c) $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$

Distributive law

(d) $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$

Distributive law

(e) $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$

Scalar triple product

(f) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$

Vector triple product

11. Theorem: For nonzero vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$, if θ is the angle between \mathbf{a} and \mathbf{b} and $0 \le \theta \le \pi$, then $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$.

- 12. Corollary: Two nonzero vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$ are parallel if and only if $\mathbf{a} \times \mathbf{b} = \vec{0}$.
- 13. Find $|\mathbf{a} \times \mathbf{b}|$ and determine whether $\mathbf{a} \times \mathbf{b}$ is directed into the page or out of the page.
- 14. Area of Parallelogram: The parallelogram formed by two nonparallel nonzero vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$ has an area given by the norm of their cross product: Area = $|\mathbf{a} \times \mathbf{b}|$.

- 16. Note: $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, and $\mathbf{k} \times \mathbf{i} = \mathbf{j}$.
- 17. Volume of Parallelepiped and Scalar Triple Product: The parallelepiped formed by three non-coplanar vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ has a volume given by: Volume = $|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$.

18. Compute the volume of the parallelepiped with three adjacent edges formed by the vectors $\mathbf{a} = \langle 1, 2, 1 \rangle$, $\mathbf{b} = \langle 2, 1, -3 \rangle$ and $\mathbf{c} = \langle 2, -1, 3 \rangle$.

19. Torque $\vec{\tau}$: A force known as torque $\vec{\tau}$ is defined by $\vec{\tau} = \mathbf{r} \times \mathbf{F}$, where \mathbf{F} is the force applied to the end of a handle and \mathbf{r} is the position vector for the end of the handle. In particular,

$$|\vec{\tau}| = |\mathbf{r} \times \mathbf{F}| = |\mathbf{r}| |\mathbf{F}| \sin \theta.$$

20. Compute the magnitude of the torque if a 40-newton force is applied to the end of a 0.25-meter wrench at an angle of 75°. Give your answer in joules, where 1 joule is 1 newton-meter.

21.	Point-to-Line Distance in \mathbb{R}^3 :	The distance d from a	point Q to the line through t	the points P
	and R in \mathbb{R}^3 is			

d =

22. Compute the distance from Q(1,2,1) to the line through the points P(2,1,-3) and R(2,-1,3).