1. 2×2 Determinant: $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$.
2. 3×3 Determinant: $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=a_{1}\left|\begin{array}{ll}b_{2} & b_{3} \\ c_{2} & c_{3}\end{array}\right|-a_{2}\left|\begin{array}{ll}b_{1} & b_{3} \\ c_{1} & c_{3}\end{array}\right|+a_{3}\left|\begin{array}{ll}b_{1} & b_{2} \\ c_{1} & c_{2}\end{array}\right|$.
3. Compute $\left|\begin{array}{cc}-2 & -5 \\ 1 & 3\end{array}\right|$ and $\left|\begin{array}{ccc}2 & 3 & -1 \\ 0 & 1 & 0 \\ -2 & -1 & 3\end{array}\right|$.
4. Cross Product: The cross product of two vectors $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ in \mathbb{R}^{3} is the vector

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k} .
$$

5. Compute $\langle 1,-3,5\rangle \times\langle-2,4,6\rangle$.
6. Theorem: For any vector $\mathbf{a} \in \mathbb{R}^{3}$ we have $\mathbf{a} \times \mathbf{a}=\mathbf{0}$ and $\mathbf{a} \times \mathbf{0}=\mathbf{0}$.
7. Theorem: For $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$ the cross product $\mathbf{a} \times \mathbf{b}$ is orthogonal (normal) to both \mathbf{a} and \mathbf{b}.
8. Right-hand Rule: If you align the fingers of your right hand along the vector a and bend your fingers around in the direction of rotation from a toward \mathbf{b} through an angle of less than 180°, your thumb will point in the direction of $\mathbf{a} \times \mathbf{b}$. Note that $\mathbf{b} \times \mathbf{a}$ points in the opposite direction of $\mathbf{a} \times \mathbf{b}$.
9. Warning! $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}$, and $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} \neq \mathbf{a} \times(\mathbf{b} \times \mathbf{c})$ in general.
10. Theorem: For any vectors $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{3}$ and any scalar λ, the following hold:
(a) $\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})$

Anticommutativity
(b) $(\lambda \mathbf{a}) \times \mathbf{b}=\mathbf{a} \times(\lambda \mathbf{b})=\lambda(\mathbf{a} \times \mathbf{b})$
(c) $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$
(d) $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$
(e) $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
(f) $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$

Distributive law
Distributive law
Scalar triple product
Vector triple product
11. Theorem: For nonzero vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$, if θ is the angle between \mathbf{a} and \mathbf{b} and $0 \leq \theta \leq \pi$, then

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta .
$$

12. Corollary: Two nonzero vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$ are parallel if and only if $\mathbf{a} \times \mathbf{b}=\overrightarrow{0}$.
13. Find $|\mathbf{a} \times \mathbf{b}|$ and determine whether $\mathbf{a} \times \mathbf{b}$ is directed into the page or out of the page.
14. Area of Parallelogram: The parallelogram formed by two nonparallel nonzero vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$ has an area given by the norm of their cross product: Area $=|\mathbf{a} \times \mathbf{b}|$.
15. Compute the area of the parallelogram formed by vectors $\langle 1,2,3\rangle$ and $\langle 4,5,6\rangle$.
16. Note: $\mathbf{i} \times \mathbf{j}=\mathbf{k}, \mathbf{j} \times \mathbf{k}=\mathbf{i}$, and $\mathbf{k} \times \mathbf{i}=\mathbf{j}$.
17. Volume of Parallelepiped and Scalar Triple Product: The parallelepiped formed by three noncoplanar vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ has a volume given by: Volume $=|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|$.
18. Compute the volume of the parallelepiped with three adjacent edges formed by the vectors $\mathbf{a}=$ $\langle 1,2,1\rangle, \mathbf{b}=\langle 2,1,-3\rangle$ and $\mathbf{c}=\langle 2,-1,3\rangle$.
19. Torque $\overrightarrow{\boldsymbol{\tau}}$: A force known as torque $\overrightarrow{\boldsymbol{\tau}}$ is defined by $\overrightarrow{\boldsymbol{\tau}}=\mathbf{r} \times \mathbf{F}$, where \mathbf{F} is the force applied to the end of a handle and \mathbf{r} is the position vector for the end of the handle. In particular,

$$
|\overrightarrow{\boldsymbol{\tau}}|=|\mathbf{r} \times \mathbf{F}|=|\mathbf{r}||\mathbf{F}| \sin \theta
$$

20. Compute the magnitude of the torque if a 40 -newton force is applied to the end of a 0.25 -meter wrench at an angle of 75°. Give your answer in joules, where 1 joule is 1 newton-meter.
21. Point-to-Line Distance in \mathbb{R}^{3} : The distance d from a point Q to the line through the points P and R in \mathbb{R}^{3} is

$$
d=
$$

22. Compute the distance from $Q(1,2,1)$ to the line through the points $P(2,1,-3)$ and $R(2,-1,3)$.
