1. Dot Product: The dot product of two vectors $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$ in \mathbb{R}^2 is the scalar

$$\mathbf{a} \cdot \mathbf{b} =$$

Similarly, the dot product of two vectors $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ in \mathbb{R}^3 is

$$\mathbf{a} \cdot \mathbf{b} =$$

- 2. Compute the dot product $\mathbf{a} \cdot \mathbf{b}$ for the following:
 - (a) $\mathbf{a} = \langle 3, -2, -4 \rangle$ and $\mathbf{b} = \langle 2, 1, 5 \rangle$;
 - (b) $\mathbf{a} = 2\mathbf{i} 5\mathbf{j} + \mathbf{k}$ and $\mathbf{b} = 6\mathbf{i} + 3\mathbf{j} 2\mathbf{k}$.
- 3. Theorem: For vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} and any scalar λ the following hold:
 - (a) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$

Commutative law

(b) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$

Distributive law

- (c) $(\lambda \mathbf{a}) \cdot \mathbf{b} = \lambda (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\lambda \mathbf{b})$
- (d) $\mathbf{0} \cdot \mathbf{b} = 0$
- (e) $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$.

Proof:

- 4. Angle between vectors: For two nonzero vectors **a** and **b**, define the angle θ , $0 \le \theta \le \pi$, to be the smaller angle between the vectors.
- 5. Theorem: Let θ be the angle between nonzero vectors **a** and **b**. Then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta.$$

Proof:

6. Compute the angle between the vectors $\mathbf{a} = \langle 2, 3, 5 \rangle$ and $\mathbf{b} = \langle -4, 1, -1 \rangle$.

- 7. Orthogonal: Two vectors \mathbf{a} and \mathbf{b} are orthogonal iff $\mathbf{a} \cdot \mathbf{b} = 0$.
- 8. Find all values of λ such that $\mathbf{a} = \langle \lambda, -2, 3 \rangle$ and $\mathbf{b} = \langle \lambda, \lambda, -5 \rangle$ are orthogonal.
- 9. The angle between \mathbf{a} and \mathbf{b} is acute if $\mathbf{a} \cdot \mathbf{b} > 0$ and obtuse if $\mathbf{a} \cdot \mathbf{b} < 0$.
- 10. Find a vector orthogonal to $4\mathbf{i} \mathbf{j} 2\mathbf{k}$.
- 11. Component of ${\bf b}$ along ${\bf a}$: The component of ${\bf b}$ along ${\bf a}$ is the scalar ${\rm comp}_{\bf a}{\bf b} =$

12. Projection of ${\bf b}$ onto ${\bf a}$: The projection of ${\bf b}$ onto ${\bf a}$ is the vector ${\rm proj}_{\bf a}{\bf b} =$

- 13. Compute $comp_{\mathbf{b}}\mathbf{a}$ and $proj_{\mathbf{b}}\mathbf{a}$ for $\mathbf{a}=\langle 2,-1,3\rangle$ and $\mathbf{b}=\langle 1,2,2\rangle$.
- 14. Prove that $\mathbf{a} \cdot \mathbf{b} = \frac{1}{4} |\mathbf{a} + \mathbf{b}|^2 \frac{1}{4} |\mathbf{a} \mathbf{b}|^2$.