12.1 Three-Dimensional Coordinate Systems

1. We consider points (x, y, z) in 3-dimensional Euclidean space \mathbb{R}^{3}, usually consisting of three rectangular coordinate axes x, y, z that intersect at the origin point $O=(0,0,0)$.
2. Handedness:

Left-handed on the left, Right-handed on the right
3. Octants:

4. Planes \& Axes:

Region	
$x y$-plane	Description
$x z$-plane	
$y z$-plane	
x-axis	
y-axis	
z-axis	

5. Plotting (a, b, c) for $a, b, c>0$: Move a units along the x-axis from the origin O to the point $(a, 0,0)$, then parallel to the y-axis b units to the point $(a, b, 0)$, then c units parallel to the z-axis to the point (a, b, c). Move similarly for other coordinates.
6. Plot the points $(1,-2,-3)$ and $(-3,1,2)$.
7. Distance: The distance between $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
\left|P_{1} P_{2}\right|=
$$

8. Sphere: A sphere is the set of all points at a constant distance (radius) from a given point (center). Therefore,
describes sphere with points (x, y, z) centered at (a, b, c) and radius r.
9. Find the distance between $(-1,0,2)$ and $(1,2,3)$.
10. Identify the following:

- $(x-3)^{2}+(y-2)^{2}+(z-1)^{2}=9$
- $(x+1)^{2}+y^{2}+(z+4)^{2}=5$
- $x^{2}+y^{2}+z^{2}=1$

11. Identify the geometric shape described by the equation

$$
x^{2}+2 x+y^{2}+z^{2}-4 z=0 .
$$

12. Describe the set of all points in 3 -space whose coordinates satisfy $x^{2}+y^{2}+z^{2}-2 x+8 z \leq 8$.
13. Describe the set of all points in 3 -space whose coordinates satisfy $y^{2}+z^{2}+6 y-4 z>3$.
14. Sketch the complete graph of $x^{2}+z^{2}=1$ in 3 -space.
15. Are the points $P(2,3,1), Q(4,2,2)$, and $R(8,0,4)$ on the same line?
